THE SYNTHESIS OF 11-SUBSTITUTED PROSTAGLANDIN INTERMEDIATES¹⁾

Kenji Inoue and Kiyoshi Sakai*

Central Research Laboratories, Sankyo Co., Ltd.

1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan

(Received in Japan 13 September 1977; received in UK for publication 26 September 1977)

In a previous paper,²⁾ we reported a convenient synthetic method for lldeoxy prostaglandin intermediates. In connection with this method, we are further interested in the preparation of ll-substituted prostaglandins by Wittig reaction of α -dienols with stable ylides. Now we wish to report the synthesis of llhydroxymethyl PGs <u>1</u>,³⁾ ll-amino PGs <u>2</u>⁴⁾ and natural PGs <u>3</u>⁵⁾ synthetic intermediates which correspond to the Corey's intermediate.

Wittig reaction of methyl-4,5-dioxo cyclopentane tricarboxylate $\underline{4}$ (pka₁ = 4.54 and pka₂ = 8.53) with carbomethoxymethylene triphenyl phosphorane in CHCl₃ under reflux for 24 hr gave a mixture of the exo form (mp. 91.5-93.5°C) $\underline{5}^{6}$ and the endo form (oily) $\underline{6}$ [80.5%, (exo/endo=1/4); ir⁷: 1750, 1680, 1620 cm⁻¹; m/e: 328 (M⁺)]. Catalytic hydrogenation of the mixture of compounds $\underline{5}$ and $\underline{6}$ over 10% Pd-C in MeOH-AcOH, and decarboxylation with hot conc. HCl followed by treatment with CH₂N₂ yielded the keto triester $\underline{7}^{8}$ [90%, bp. 149-156°C/0.02mmHg, ir: 1740 cm⁻¹; nmr: 3.73 and 3.67 (3X 3H, s, COOCH₃)] accompanying a small amount of the stereo isomer. Reduction of $\underline{7}$ with Raney Ni in MeOH afforded mainly the lactone diester $\underline{8}$ [82.5%, ir: 1780, 1730 cm⁻¹, nmr: 5.00 (1H, m, lactone), 3.70 (2X 3H, s, COOCH₃)]. Regioselective hydrolysis of $\underline{8}$ was accomplished by treatment with Ba(OH)2.8H₂0 in MeOH at room temperature for 7 hr yielding $\underline{9}^{9}$ [71.7%, ir: 3200,

<u>5</u>

-

<u>6</u>

7

 $R = CH_2 OAc \quad \underline{11}$ $NH_2 \cdot HCl \quad \underline{13}$ $NHAc \quad \underline{14}$

1770, 1730 cm⁻¹; nmr: 10.5 (1H, s, COOH), 5.00 (1H, m, lactone), 3.70 (3H, s, $COOCH_3$)]. The monocarboxylic acid <u>9</u> is a versatile intermediate for the following l1-substituted PGs synthesis.

Reduction of the monocarboxylic acid 9 with NaBH₄ in THF-H₂O at -50°C for 15 min <u>via</u> the mixed anhydride (C1C00Et-Et₃N) gave the hydroxymethyl lactone <u>10</u> [60.7%, ir: 3480, 1770, 1730 cm⁻¹; nmr: 4.90 (1H, m, lactone), 3.70 (3H, s, C00CH₃)]. The hydrolysis of <u>10</u> with 8% HCl followed by acylation with Ac_2O -BF₃·-Et₂O gave the acetoxymethyl carboxylic acid <u>11</u> [75.1%, ir: 3170, 1775, 1740 cm⁻¹; nmr: 9.75 (1H, s, C00H), 2.00 (3H, s, CH₃CO)]. Further reduction of <u>11 via</u> the mixed anhydride yielded the acetoxymethyl alcohol <u>1</u> [75.5%, ir: 3460, 1770, 1740 cm⁻¹; nmr: 4.85 (1H, m, lactone), 4.03 (2H, d, -CH₂OAc), 3.64 (2H, d, -CH₂OH), 2.00 (3H, s, CH₃CO)].

Modified Curtius reaction of <u>9</u> with diphenyl phospholyl azaide¹⁰ in t-BuOH under reflux for 20 hr gave the carbamate <u>12</u> [46.8%, mp. 153.5-155.0°C; ir: 3380, 1770, 1730, 1680, 1515 cm⁻¹; nmr: 5.00 (2H, m, lactone and >NH), 4.20 (1H, m, >CH-N), 1.40 (9H, s, t-Bu)]. Hydrolysis of <u>12</u> with 8% HCl at 70°C for 2 hr followed by recrystallization from hot water provided the amino acid hydrochloride <u>13</u> [83.0%, mp. 244-246°C; ir: 3200, 1760, 1610, 1585, 1500 cm⁻¹; nmr: 5.20 (1H, m, lactone), 4.00 (1H, m, >CH-N)]. Acylation of <u>13</u> with Ac₂0-AcOK in dioxane at room temperature for 24 hr gave the acetamide <u>14</u> [53%, mp. 234-238°C; ir: 3375, 1765, 1740, 1625 cm⁻¹; nmr (DMS0-d₆): 8.10 (1H, d, >NH), 4.95 (1H, m, lactone), 4.30 (1H, m, >CH-N), 1.80 (3H, s, CH₃CO)]. Reduction of the carboxyl group of <u>14 via</u> the mixed anhydride yielded the acetamide alcohol 2^{4} [38.5%, mp. 118-120°C; ir: 3380, 3280, 1775, 1655, 1165 cm⁻¹; nmr (CD₃OD): 5.00 (1H, m, lactone), 4.80 (2H, s, OH), 4.10 (1H, m, >CH-N), 3.65 (2H, d, -CH₂O), 1.95 (3H, s, CH₃CO)].

Treatment of <u>9</u> with thionyl chloride gave the acyl chloride <u>15</u> [mp. 80.5-82.0°C]. By methylation with dimethyl copper lithium in ether at -50° C for 30 min the chloride <u>15</u> yielded the acetyl lactone <u>16</u> [29.4%, mp. 57.0-59.0°C; ir: 1780, 1740, 1720 cm⁻¹; nmr: 5.00 (1H, m, lactone), 3.70 (3H, s, COOCH₃), 2.20 (3H, s, CH₃CO)]. Baeyer Villiger oxidation of <u>16</u> with trifluoroperacetic acid-Na₂HPO₄ in CH₂Cl₂ at room temperature for 10 hr gave the acetoxy lactone <u>17</u> [65.4%, ir: 1790, 1725 cm⁻¹; nmr: 5.40 (1H, q, like, >CH-OAc), 5.10 (1H, m, lactone), 3.70 (3H, s, COOCH₃), 2.00 (3H, s, CH_3CO); m/e: 242 (M⁺)]. Hydrolysis of <u>17</u> with 8% HCl at 40°C for 5 hr yielded the hydroxy acid <u>3</u>⁵ which was esterified with diazomethane to give the hydroxy lactone <u>18</u> [quantitative yield, mp. 66-68°C; ir: (5% CHCl₃) 3450, 1765, 1730 cm⁻¹; nmr: 5.00 (1H, m, lactone), 4.50 (1H, q, >CH-0), 3.70 (3H, s, $COOCH_3$), 3.60 (1H, s, OH)].

Acknowledgement: The authors would like to thank Director Dr. K. Arima and Director of Chemical Research Dr. Y. Kishida for their valuable help and advice.

REFERENCES AND FOOTNOTES

- 1) Synthetic studies on Prostanoid XIV.
- 2) K. Inoue and K. Sakai, Tetrahedron Letters, 4107 (1976).
- 3) 11-Hydroxymethyl PG E_1 and PG E_2 showed strong uterus contraction activity in guinia pigs:
 - K. Sakai, J. Ide and O. Oda, Tetrahedron Letters, 3021 (1975).
 - A. Guzman and J. M. Muchowski, Tetrahedron Letters, 2053 (1975).
 - G. L. Bundy, Tetrahedron Letters, 1957 (1975).
- Although ll-amino PGs derivatives are not prepared yet, <u>2</u> will by the promising intermediate for the synthesis of ll-amino PGs derivatives.
- 5) The synthesis of PGs from the hydroxy acid <u>3</u> was already accomplished by:
 R. Peel and J. K. Sutherland, J. C. S., Chem. Commun., <u>1974</u> 151.
 K. G. Paul, F. Johnson and D. Favara, J. Amer. Chem. Soc., <u>98</u> 1285 (1976).
- 6) The stereochemistry of 5 and 6 were not assigned. The ratio of the exo and endo forms was assigned by NMR.
- 7) IR (cm⁻¹) spectra were taken in neat or nujol mull and NMR (δ) spectra were taken in CDCl₃ containing TMS as internal standard unless otherwise stated.
- 8) It is noteworthy that the trans-trans compound $\underline{7}$ is mainly obtained in these reactions.
- 9) The structure of the acid <u>9</u> was confirmed by an unambiguous alternative synthesis (unpublished data).
- 10) K. Ninomiya, T. Shioiri and S. Yamada, Tetrahedron, <u>30</u> 2151 (1974).

4066